This question originally appeared on Quora.
Answer by Casey Handmer, grad student of physics and acolyte of Mars:
This is a tasty question.
Simple answer: Mars, because it already has a day which is about the right length, and heating planets is easier than cooling them.
Complicated answer: HOW much more difficult is it to terraform various planets?
To answer this question, I’m going to estimate (to order of magnitude) quantities of energy necessary to do stuff and express that in easily understood terms. Energy is measured in Joules (J). One joule is the energy necessary to heat a gram of water by about a quarter of a Celcius degree. Not very much!
In order to measure larger quantities, I use scientific notation. As an example, . The 6 means six zeroes after the 1. Scales like the Richter scale (for earthquakes) and decibels (for sound) would use just the 6 and be done with it!
Various amounts of energy in Joules and what you could do with it.
: Energy required to boil one teardrop.
: Energy released by eating 1/8 of a peanut.
: Energy required to boil a bottle of beer.
: Energy produced as electricity by a typical utility scale power plant in a second. Energy contained in a tank of gas.
: Kinetic energy of the space shuttle in orbit.
: Energy produced by a power plant in a month of continuous operation. Energy released by a large fission (not fusion) nuclear bomb.
: Energy released by a large earthquake.
: Energy consumed by the whole world in 2 years.
: Energy required to raise ocean temperature by 1 Celcius degree. Energy released by a huge meteorite impact.
: Energy required to boil the oceans. Energy produced by the sun in 10 seconds.
: Energy produced by the sun in 7 hours.
: Energy required to vaporize the Earth. Also the energy produced by the sun in a year.
I’m happy to go into details in the comments regarding these calculations. I’ll also explore a few different scenarios.
Mars
- Energy required to heat Mars from current average temperature of -60C to a more comfortable 15C (like Earth):
. This is mostly in melting permafrost. Note that this is 10 million times more than the energy produced by the largest nuclear weapon ever built, so simply nuking Mars will not really help that much.
- It is, however, on par with the impact that wiped out the dinosaurs. Energy required to move a 10km asteroid onto a Mars (but not Earth) impacting trajectory:
, or
if you’re prepared to wait a long time and use three-body interactions. A hundred smaller asteroids of the same total mass would be easier but still require the same total energy.
Clearly, some subtlety is called for.
- Solar insolation at Mars:
, or
.
Water vapour and CO


- I’m going to guess that converting 1/1000
of Mars’ atmosphere to methane would be a good start. Energy to do this:
(mainly in electrolysis of water).
Another approach not entirely without merit would be to increase the solar flux by using GIANT mirrors.
- Energy required to launch a mirror to Mars-Sun L1 that would increase insolation to Earth levels:
. If you have nuclear powered self-replicating machinery, you could process a near-orbit asteroid (~200m across) into a giant mirror/solar sail and sail it into position. That would reduce energy requirements incurred from building on a planet and launching that way.
- Energy required to remove
of rock with explosives and trucks:
. Drilling deep shafts and setting off a daisy chain of big nukes could also do the trick, but would also cause lots of radioactive fallout.


Venus
Venus is a MUCH harder bet than Mars. While Mars could be terraformed in only a few thousand years, no gently-gently approach could ever work on Venus.
First, alternatives to terraforming. It would be possible to live on Venus in the high atmosphere, in giant floating cities. Using a standard space-station atmospheric mix at about half an earth atmosphere, a pressurized geodesic sphere would float naturally somewhere above the bulk of the clouds of sulfuric acid. Atmospheric motions would likely lead to some rotation about the polar areas, where inhabitants would experience a near-perpetual sunset. Floating cities could be mechanically rotated to provide a day-night cycle for on-board agriculture. The Venusian atmosphere is rich in carbon, oxygen, sulfur, and has trace quantities of water. These could be mined for building materials, while rarer elements could be mined from the surface with long scoops or imported from other places with space-plane shuttles.
But Venus is nearly as big as Earth, with similar gravity and heaps of sun. Floating cities are all very well, but we need to house billions of humans, not millions. What’s the next step?
First, the atmosphere has got to go. 200 atmospheres of crushing pressure, heat, and sulfuric acid rain.
- Energy required for giant mirror to reflect all light from the surface:
. Same discussion as with Mars applies.

We need a way to spin Venus faster. The obvious approach is to crash asteroids into the surface to make it turn faster. Cost of this is

In fact, the mass of the atmosphere, now frozen out hundreds of meters thick all over the planet, is about the same as the mass of the entire asteroid belt, and it’s already on Venus. All you have to do is chuck it off the surface fast enough and in the right direction, and you can spin the planet in any direction you like. In order to spin the planet up to a 24 hour day AND get rid of the frozen atmosphere, it needs to leave the surface at about


After this is done, the energy budget can be pilfered to sculpt a few ocean basins and continents, synthesize a desired atmosphere, open the sunshade a little, and start growing plants.
Conclusion: Because of the rotation problem, terraforming Venus will require insane amounts of energy. Whereas terraforming Mars requires a fraction of the energy reaching only it from the sun, Venus requires a substantial fraction of ALL the energy from the sun.
Postscript: I have no doubt made errors. Let’s discuss in the comments on Quora and figure out better estimates. Also, some discussion of the energy cost to then apply these techniques to try and remedy some of the problems on Earth wouldn’t go astray.
More questions on Planetary Science: